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1 Introduction

In this paper, we show a general way of establishing eigenfunction expansions
of the transient state of a linear scattering problem, i.e., its decomposition on a
continuous family of time-harmonic states which represent the response of the
system to a family of time-harmonic plane waves. We illustrate the method in
the context of linear water waves.

Since the sixties, the question has been dealt with for many wave propagation
phenomena (see the references in [1], and [2] in hydrodynamics). But the common
feature of these studies is that most proofs are highly “problem-dependent”, that
is, a slight change in the definition of the problem requires to adapt most proofs.
The purpose of the present paper is to show a more synthetic approach which
has the advantage to allow every compact perturbation of a “free” wave problem.
Our approach is mainly inspired by the book from Weder [3].

We shall denote L2
s(R) :=

{
v : R → C;

∫
R(1 + x2)s|v(x)|2 dx <∞

}
for s ∈ R

(with the particular case L2
0(R) = L2(R)), which allows to consider L2

s(R) and
L2
−s(R) as dual spaces in the scheme

L2
s(R) ⊂ L2

0(R) ⊂ L2
−s(R) if s > 0.

This means that the integral
∫

R u v can be seen as the scalar product (· , ·) in
L2

0(R) as well as the duality product 〈· , ·〉 between L2
−s(R) and L2

s(R).

2 Linear water waves

For the sake of simplicity, we shall illustrate the method with the 2D scattering
(in a half space) by a fixed rigid immersed body, but the method easily extends to
more involved situations such as the sea-keeping problem for an elastic floating
body.

The free problem. Let us first describe the “free”problem, i.e., without
scatterer (the tilde character will refer to this free situation). We denote by
Ω̃ :=

{
X = (x, y) ∈ R2; y < 0

}
the half-space delimited by the free surface F̃ :=

{x = 0}. Without outer excitation, the velocity potentiel ϕ̃ = ϕ̃(X, t) satisfies

∆ϕ̃ = 0 in Ω̃, (1)
∂2

t ϕ̃+ ∂yϕ̃ = 0 on F̃ , (2)
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together with the initial conditions

ϕ̃(0) = g0 and ∂tϕ̃(0) = ġ0 on F̃ . (3)

The well-posedness of this problem is easily seen by rewriting (1)–(2) as the
following abstract wave equation on ũ := ϕ̃|F̃ :

∂2
t ũ+ Ãũ = 0 with Ã := (∂yH̃)|F̃ , (4)

where H̃ denotes the “harmonic lifting” from F̃ to Ω̃, i.e., for ṽ defined on F̃ ,
the function ψ̃ = H̃ ṽ is the solution to ∆ψ̃ = 0 in Ω̃ and ψ̃ = ṽ on F̃ . It may
be seen that Ã actually defines an unbounded positive selfadjoint operator in
L2

0(F̃ ). Hence the solution to (4)–(3) writes ũ(t) = Re(exp(−iÃ
1/2
t) ũ0), where

ũ0 := g0 +iÃ
−1/2

ġ0. The Fourier transform actually provides a diagonal form of
this expression in a generalized spectral basis of Ã defined by the functions

w̃λ,k(X) =
eλ(ikx+y)

√
2π

for λ ∈ R+ and k = ±1, (5)

which are time-harmonic solutions to (1)–(2): they represent plane surface waves
of frequency

√
λ which propagate towards k×∞. In the sequel w̃λ,k will denote

either the above functions or their restrictions to F̃ . Note that w̃λ,k ∈ L2
−s(F̃ )

if s > 1/2.

Proposition 1. The projection on the family {w̃λ,k}

(Ũ ṽ)λ,k := 〈ṽ, w̃λ,k〉F̃ ∀ṽ ∈ L2
s(F̃ ) (s > 1/2), (6)

defines (by density) a unitary transformation from L2
0(F̃ ) to the spectral space

L2(R+×{±1}) = {ûλ,k ;
∫

R+

∑
k=±1 |ûλ,k|2 dλ <∞}. Moreover Ũ diagonalizes

Ã in the sense that f(Ã) = Ũ
∗
f(λ) Ũ for every bounded function f : R+ → C,

which can be written more explicitely

f(Ã)ṽ =
∫

R+
f(λ)

∑
k=±1

〈ṽ, w̃λ,k〉 w̃λ,k dλ. (7)

The latter formula is the generalized eigenfunction expansion of f(Ã). For f(λ) =
exp(−iλ1/2t), it yields the diagonal form of the solution to (4)–(3).

A simple perturbation. We claim that a similar expansion hold for every
compact perturbation of the free water wave problem (with a possible additional
discrete contribution due to possible trapped modes). Consider the case of an
immersed fixed rigid obstacle. We denote by Ω ⊂ Ω̃ the domain exterior to
its boundary Γ (so that ∂Ω = F̃ ∪ Γ ). The equations satisfied by the velocity
potential are now given by

∆ϕ = 0 in Ω, (8)
∂2

t ϕ+ ∂yϕ = 0 on F̃ , (9)
∂nϕ = 0 on Γ, (10)
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as well as initial conditions similar to (3). Exactly as for the free problem, these
equations can be expressed as an abstract wave equation of the form (4) which
involves the perturbed selfadjoint operator A := (∂yH)|F̃ instead of Ã, where H

is the perturbed harmonic lifting (obtained by inserting the Neumann condition
on Γ ).

How can one construct a spectral basis for A? Simply by considering two
kinds of perturbations of the plane waves w̃λ,k, written in the form

w±
λ,k = w̃λ,k + W±

λ,k. (11)

These functions correspond to time-harmonic solutions to (8)–(10) if W±
λ,k sat-

isfies

∆W±
λ,k = 0 in Ω, (12)

∂yW±
λ,k − λW±

λ,k = 0 on F̃ , (13)

∂nW±
λ,k = −∂nw̃λ,k on Γ.

The sign +, respectively −, is assigned to outgoing, respectively incoming, waves,
which is specified by means of the standard radiation condition at infinity. To
be sure that both families (11) actually define generalized spectral bases for A,
we shall make use of an abstract framework.

3 Abstract Perturbation Result

For the sake of simplicity, we keep the particular functional spaces introduced
in the previous sections to present some general results. We denote by Ã and
A two bounded and positive selfadjoint operators in L2

0(F̃ ) (contrary to A and
Ã which are unbounded), by R̃(ζ) := (Ã − ζ)−1 and R(ζ) := (A − ζ)−1 their
respective resolvents (for ζ ∈ C \ R+), and by D := A− Ã.

We assume that we know a spectral basis {w̃λ,k} in L2
−s(F̃ ) of Ã in the sense

of Proposition 1. The idea is to search a spectral basis wλ,k ofA as a perturbation
of the latter. It is readily seen that if the following one-sided limits exist,

p±λ,k := − lim
C±3ζ→λ∈R+

R(ζ)Dw̃λ,k where C± := {ζ ∈ C; ±Im ζ > 0},

then w±λ,k := w̃λ,k + p±λ,k formally satisfy (A − λ)w±λ,k = 0. Under suitable
conditions, this formal construction yields two spectral bases of A.

The study of the behavior of R(ζ) near R+ is the object of the so-called
limiting absorption principle. Noticing that R(ζ) = R̃(ζ)(Id + D R̃(ζ))−1, it is
clear that the existence of the limits R(λ ± i0) depends on the existence of
R̃(λ± i0), together with the invertibility of Id +D R̃(λ± i0).

Definition 1. The free operator Ã is said to satisfy a “strong limiting absorp-
tion principle” if R̃(ζ) := (Ã − ζ)−1 considered as an operator from L2

s(F̃ ) to
L2
−s(F̃ ) has one-sided limits

R̃(λ± i0) := lim
C±3ζ→λ

R̃(ζ) ∀λ > 0, (14)
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and these limits satisfy the following property: if Im〈R̃(λ ± i0)ũ, ũ〉 = 0 for
some ũ ∈ L2

s(F̃ ), then R̃(λ ± i0)ũ ∈ L2
0(F̃ ) (which means that a non-excited

time-harmonic wave must have a finite energy).

Definition 2. A is called a compact perturbation of Ã if D extends by density
to a bounded operator from L2

−s(F̃ ) to L2
s(F̃ ), and D R̃(λ ± i0) are compact

operators in L2
s(F̃ ) for every λ > 0.

Then we have (see [1])

Theorem 1. Assume that the free operator Ã satisfies the strong limiting ab-
sorption principle of Definition 1. Then every compact perturbation A of Ã
(which is assumed to have no point spectrum, otherwise one has to consider the
spectrally absolutely continuous part of A) satisfies a similar limiting absorption
principle, and the one-sided limits of its resolvent are given by

R(λ± i0) = R̃(λ± i0)(Id +D R̃(λ± i0))−1.

Moreover both families w±λ,k = (Id − R(λ ± i0)D)w̃λ,k, are generalized spectral
bases of A (in the sense of Proposition 1).

4 Application to water wave

We show in this section that our water wave problem actually enters the frame-
work of Theorem 1. Since the latter involves bounded operators, we cannot
compare directly Ã and A but an invertible bounded and real function of these
operators, namely Ã := R̃(−α) and A := R(−α) for a fixed α ∈ R+. The link
between them derives from the following relation (also valid without the tilde):

R̃(ζ) = −ζ−1
(
Id + ζ−1R̃(ζ−1 − α)

)
for all ζ ∈ C\]0, α−1[.

Limiting absorption for the free problem. The statement of Definition
1 can be verified directly on the resolvent of Ã. The existence of the limits
R̃(λ± i0) is a straightforward consequence of the regularity of w̃λ,k with respect
to λ > 0. Indeed the diagonal form of the resolvent which follows from (7) can
be written (for every ũ, ṽ ∈ L2

s(F̃ ))(
R̃(ζ)ũ , ṽ

)
=

∫
R+

〈〈Φ̃λ, ũ⊗ ṽ〉〉
λ− ζ

dλ where Φ̃λ =
∑

k=±1

w̃λ,k ⊗ w̃λ,k.

By (5), we have Φ̃λ(x, x′) = π−1 cosλ(x − x′) which is regular. Hence Plemelj
formula yields

lim
C±3ζ→λ0∈R+

(R̃(ζ)ũ , ṽ) = PV

∫
R+

〈〈Φ̃λ, ũ⊗ ṽ〉〉
λ− λ0

dλ ± iπ〈〈Φ̃λ0 , ũ⊗ ṽ〉〉. (15)
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In other words, the limits R̃(λ0± i0) exist and satisfy the integral representation

(R̃(λ0 ± i0)ũ)(x) =
∫

F̃

Gλ0±i0(x, x′) ũ(x′) dx′,

where Gλ0±i0 = PV
∫

R+(λ − λ0)−1Φ̃λdλ ± iπΦ̃λ0 is the Green function of the
free problem. The additional property of Definition 1 follows from the asymptotic
behavior of (R̃(λ± i0)ũ)(x) at infinity, which derives from the explicit knowledge
of Gλ±i0: for some ε > 0,

(R̃(λ± i0)ũ)(x) = ±2iπ (Ũ ũ)λ,±kx w̃λ,±kx(x) + o(|x|−1/2−ε), (16)

where kx = x/|x|. Using (15), it is now easy to see that if for a given function
ũ ∈ L2

s(F̃ ) with s > 1/2,

0 = Im〈R̃(λ± i0)ũ, ũ〉 = ±π
∑

k=±1

|(Ũ ũ)λ,k|2 ,

then (Ũ ũ)λ,±1 = 0 and (16) thus shows that R̃(λ± i0)ũ ∈ L2
0(F̃ ).

Compactness of the perturbation. The fact that our particular per-
turbed problem satisfies Definition 2 derives from the following proposition
and the compactness of the canonical injection from H

1/2
s+ε(F̃ ) := {v; (1 +

x2)(s+ε)/2v ∈ H1/2(F̃ )} to L2
s(F̃ ), with ε > 0.

Proposition 2. The operator D := A−Ã initially defined on L2
0(F̃ ) extends to

a continuous operator from L2
−s(F̃ ) to H1/2

s+ε(F̃ ), with ε > 0 such that 1/2 < s <
3/2− ε.

Indeed, the definitions of A and Ã show that, for f ∈ L2
0(F̃ ), u = Df is

given by u = ψ|F̃ where ψ ∈ W 1(Ω) := {φ ; (1 + |x|2)−1/2(log(2 + |x|2))−1φ ∈
L2

0(Ω) and ∇φ ∈ (L2
0(Ω))2} is the solution to∣∣∣∣∣∣

∆ψ = 0 in Ω
∂yψ + αψ = 0 on F̃
∂nψ = −∂nφ̃ on Γ

and φ̃ = H̃ũ with ũ(x) =
∫

F̃
f(y)G−α(x, y)dy. Using an integral representation

of ψ and the asymptotic behavior of G−α, it may be seen that ψ|F̃ ∈ H
1/2
s+ε(F̃ )

and that D extends to L2
−s(F̃ ).
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