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SUMMARY

The present paper is devoted to generalized eigenfunction expansions for scattering problem. A new method for
establishing such expansions is proposed and applied to scattering of linear water waves.

1. Introduction

In this paper, we show a general way of establishing
eigenfunction expansionsfor linear scattering prob-
lems, and illustrate it in the context of linear water
waves. From a physical point of view, such an ex-
pansion provides the connexion betweentransientand
time-harmonicmotions. More precisely, it leads to
decompose the state of the system at every time on a
continuous family of time-harmonic states which rep-
resent the response of the system to a family of time-
harmonic plane waves.
How can one obtaineigenfunction expansions? In the
absence of scatterer, the Fourier transform is the very
tool for this work (§2.). A natural idea for dealing
with scatterers consists in considering the problem as
a perturbationof the formerfreesituation. This leads
to consider the eigenfunctions of the free problem as
incidenttime-harmonic waves, and to search those of
the scattering problem by adding a perturbation term
representing ascatteredtime-harmonic wave (§3.).
The first application of this approach is due to Ikebe
[4] for the Schr̈odinger equation. In hydrodynamics,
the scattering of linear water waves by a fixed body
was first studied by Beale [1], and then by different au-
thors (see [3]). The common feature of these studies is
that most proofs are highly “problem-dependent”, that
is, a slight change in the definition of the perturbed
problem requires to adapt most proofs. The purpose
of the present paper is to show a more synthetic ap-
proach which has the advantage to allow general per-
turbations of a free water wave problem. In fact we
shall see how to construct generalized eigenfunction
expansions for any “compact perturbation”: we shall
give the precise meaning of this compactness property.
For the sake of simplicity, we shall illustrate the
method with the 2D scattering (in a half space) by
a fixed rigid immersed body, but the method easily
extends to more involved situations such as the sea-
keeping problem for an elastic floating body. The gen-
eral ideas are described in [2], and the detailed appli-
cation to linear water waves is the object of a forth-
coming paper.
We shall use the following notation, fors∈ R :

L2
s(R) =

{
v : R→ C;

∫
R
(1+x2)s|v(x)|2dx < ∞

}
,

(with the particular caseL2
0(R) = L2(R)), which al-

lows to considerL2
s(R) andL2

−s(R) as dual spaces in
the scheme

L2
s(R)⊂ L2

0(R)⊂ L2
−s(R) if s> 0.

This means that the integral
∫
Ruv can be seen as the

scalar product(· , ·) in L2
0(R) as well as the duality

product〈· , ·〉 betweenL2
−s(R) andL2

s(R).

2. The “free” problem

This paper deals withlocalizedperturbations of the
linear water wave equations in the half-spaceΩ̃ ={

X = (x,y) ∈ R2; y < 0
}

delimited by the free sur-
faceF̃ = {x = 0} (the tilde character will be used for
all quantities related to this free situation). Without
outer excitation, the velocity potentielϕ̃ = ϕ̃(X, t) sat-
isfies

∆ϕ̃ = 0 in Ω̃,(1)

∂2
t ϕ̃+∂yϕ̃ = 0 onF̃ ,(2)

together with the initial conditions

(3) ϕ̃(0) = g0 and ∂t ϕ̃(0) = ġ0 on F̃ .

These equations are easily solved using a horizontal
Fourier transform. We give in Proposition 1 below an
abstract interpretation of this well-known result, with
is the basis of our perturbation approach.
Let Ã denote the operator formally defined byÃ =
(∂yH̃)|F̃ whereH̃ is the “harmonic lifting” fromF̃ to

Ω̃, i.e., for ṽ defined onF̃ , the functionψ̃ = H̃ṽ is the
solution to

∆ψ̃ = 0 in Ω̃,

ψ̃ = ṽ on F̃ .

Settingϕ̃ = H̃ũ, this allows us to rewrite (1)–(2) as an
abstract wave equation

(4) ∂2
t ũ+ Ãũ = 0 with Ã = (∂yH̃)|F̃ .

It may be easily seen that̃A actually defines an un-
bounded positive selfadjoint operator inL2

0(F̃), and



the solution to (4)–(3) writes

(5) ũ(t) = Re
{

e−iÃ1/2t ũ0

}
,

whereũ0 := g0 + iÃ−1/2ġ0. The Fourier transform ac-
tually provides adiagonalform of this expression in a
spectral basisof Ã defined by the functions

(6) w̃λ,k(X) =
eλ(ikx+y)
√

2π
for λ ∈ R+ andk =±1,

which are time-harmonic solutions to (1)–(2): they
represent plane surface waves of frequency

√
λ which

propagate towardsk×∞. In the sequel ˜wλ,k will de-
note either the above functions or their restrictions to
F̃ . Note thatw̃λ,k ∈ L2

−s(F̃) if s> 1/2.

Proposition 1 The projection on the family
{

w̃λ,k
}

(7) (Ũ ṽ)λ,k :=
〈
ṽ, w̃λ,k

〉
F̃ ∀ṽ∈ L2

s(F̃) (s> 1/2),

defines (by density) a unitary transformation from
L2

0(F̃) to the spectral space

L2(R+×{±1}) =
{

ûλ,k ;
∫
R+ ∑k=±1

∣∣ûλ,k

∣∣2dλ < ∞
}

.

MoreoverŨ diagonalizesÃ in the sense that f(Ã) =
Ũ∗ f (λ)Ũ for every bounded function f: R+ → C,
which can be written more explicitely

(8) f (Ã)ṽ =
∫
R+

f (λ) ∑
k=±1

〈ṽ, w̃λ,k〉 w̃λ,k dλ.

The latter formula is thegeneralized eigenfunction ex-
pansionof f (Ã). For f (λ) = exp(−iλ1/2t), it yields
the diagonal form of (5):

ũ(t) = Re
∫
R+ ∑

k=±1

〈ũ(0), w̃λ,k〉 w̃λ,k e−i
√

λ t dλ.

We claim that a similar expansion hold for everycom-
pact perturbationof the free water wave problem
(with a possible additional discrete contribution due
to possible trapped modes, see e.g. [5]).

3. A simple perturbation

Consider the problem of scattering of water waves
by an immersed fixed rigid obstacle. We denote by
Ω ⊂ Ω̃ the domain exterior to its boundaryΓ (so that
∂Ω = F̃ ∪Γ). The equations satisfied by the velocity
potential are now given by

∆ϕ = 0 in Ω,(9)

∂2
t ϕ+∂yϕ = 0 onF̃ ,(10)

∂nϕ = 0 onΓ,(11)

as well as initial conditions similar to (3). Exactly as
for the free problem, these equations can be expressed
as an abstract wave equation of the form (4) which in-
volves the perturbed selfadjoint operatorA = (∂yH)|F̃
instead ofÃ, whereH is the perturbed harmonic lift-
ing (obtained by inserting the Neumann condition on
Γ).
How can one construct a spectral basis forA? Simply
by considering two kinds of perturbations of the plane
wavesw̃λ,k, written in the form

(12) w±
λ,k = w̃λ,k +W±

λ,k.

These functions correspond to time-harmonic solu-
tions to (9)–(11) ifW±

λ,k satisfies

∆W±
λ,k = 0 in Ω,(13)

∂yW
±
λ,k−λW±

λ,k = 0 onF̃ ,(14)

∂nW
±
λ,k =−∂nw̃λ,k on Γ.

The sign+, respectively−, is assigned tooutgoing,
respectivelyincoming, waves, which is specified by
means of the standardradiation conditionat infinity:

(15) lim
R→+∞

∫
|x|=R

∣∣∣∂|x|W±
λ,k∓ iλW±

λ,k

∣∣∣2dy = 0.

To be sure that both families (12) actually define gen-
eralized spectral bases forA, we shall make use of an
abstract framework.

4. Abstract Perturbation Result

For the sake of simplicity, we keep the particular func-
tional spaces introduced in the previous sections to
present some general results. We denote byÃ andA
two boundedselfadjoint operators inL2

0(F̃) (contrary
to A and Ã which areunbounded). We assume that
we know a spectral basis

{
w̃λ,k ∈ L2

−s(F̃)
}

of Ã in the
sense of Proposition 1
Let us first show an intuitive construction of a general-
ized spectral basis forA considered as a perturbation
of Ã . We denote their differenceD := A − Ã . The
idea is to search solutionswλ,k to (A −λ)w = 0 in the
form wλ,k = w̃λ,k + pλ,k. Using the above definition of
D and the fact that(Ã −λ)w̃λ,k = 0, we see that the
perturbation termpλ,k must satisfy

(16) (A −λ)pλ,k =−Dw̃λ,k.

But this equation is ill-posed ifλ belongs to the spec-
trum of A , which is precisely the situation we are in-
terested in. A way to solve it consists in replacing first
A −λ by A − ζ for someζ ∈ C \R+. Indeed the re-
solvent

(17) R (ζ) := (A −ζ)−1



defines a bounded operator inL2
0(F̃) since the spec-

trum of A is contained inR+. Then, settingC± =
{ζ ∈C; ±Imζ > 0}, we can consider both one-sided
limits

p±λ,k :=− lim
C±3ζ→λ∈R+

R (ζ)Dw̃λ,k,

which formally satisfy (16). The study of the behavior
of R (ζ) nearR+ is the object of the so-calledlimiting
absorption principle. Noticing that

R (ζ) = R̃ (ζ)(Id+D R̃ (ζ))−1,

(which is easily deduced from the definition ofD),
we see that the existence ofR (λ± i0) depends on one
hand, on alimiting absorption principlefor the free
problem, i.e., the existence of the limitsR̃ (λ± i0), on
the other hand, on an additional property which en-
sures the invertibility of Id+D R̃ (λ± i0).
More rigorously, let us introduce the following

Definition 2 The free operatorÃ is said to satisfy
a “strong limiting absorption principle” if R̃ (ζ) :=
(Ã − ζ)−1 considered as an operator from L2

s(F̃) to
L2
−s(F̃) has one-sided limits

(18) R̃ (λ± i0) := lim
C±3ζ→λ

R̃ (ζ) ∀λ > 0,

and these limits satisfy the following property: if
Im

〈
R̃ (λ± i0)ũ, ũ

〉
= 0 for someũ ∈ L2

s(F̃), then
R̃ (λ± i0)ũ∈ L2

0(F̃) (which means that a non-excited
time-harmonic wave must have a finite energy).

Definition 3 A is called a compact perturbation of
Ã if D appears as a bounded operator from L2

−s(F̃)
to L2

s(F̃), andD R̃ (λ± i0) are compact operators in
L2

s(F̃) for everyλ > 0.

Then we have (see [2])

Theorem 4 Assume that the free operatorÃ satisfies
the strong limiting absorption principle of Definition
2. Then every compact perturbationA of Ã (which is
assumed to have no point spectrum) satisfies a similar
limiting absorption principle, and the one-sided limits
of its resolvent are given by

R (λ± i0) = R̃ (λ± i0)(Id+D R̃ (λ± i0))−1.

Moreover both families

w±
λ,k = (Id−R (λ± i0)D)w̃λ,k,

are generalized spectral bases ofA .

5. The strong limiting absorption principle

5.1 One-sided limits

We now prove the free operator̃A satisfies the one-
sided limits property of definition 2 consequence of
the regularity properties of{w̃λ,k}λ,k with respect to
λ > 0. For a fixedλ, consider the partial projection
Ũλ : L2

s(F̃)→C2 defined byŨλṽ= 〈ṽ, w̃λ,.〉. Then the
diagonal expression of the resolventR̃(ζ) which fol-
lows from (8) writes

(19)
(
R̃(ζ)ũ, ṽ

)
=

∫
R+

(Ũλũ,Ũλṽ)C2

λ−ζ
dλ ,

with (Ũλũ,Ũλṽ)C2 = ∑k∈{±1} Ũλũ(k) Ũλṽ(k).
First notice thatŨλũ(k) is the Fourier transformF ũ
of ũ. Then to proceed to the limit, we make use of
the continuity of the embedding ofL2

s(F̃) in L1(R)
and the ḧolderian continuity ofF (L2

s(I)) = Hs(I), the
classical Sobolev Space, wheres> 1/2 andI  R+:

lim
C±3ζ→λ0∈R+

(R̃(ζ)ũ, ṽ) = PV
∫
R+

(Ũλũ,ŨC2ṽ)λ
λ−λ0

dλ

±iπ(Ũλ0
ũ,Ũλ0

ṽ)C2

5.2 Finite energy property

We are going to stick to the second property of defini-
tion 2. To prove this property, we shall use an integral
representation of the resolventR̃(ζ) of Ã together with
the asymptotic behaviour of its Green’s function.
For a given function ˜u∈ L2

s(F̃) andζ ∈C\R+ we es-
tablish from (19) and Fubini’s theorem, the following
integral representation

R̃(ζ)ũ(x) =
∫

F̃
Gζ(x,x

′)ũ(x′)dx′,(20)

Gζ(x,x
′) := ∑

k∈{±1}

∫
R+

w̃λ,k(x) w̃λ,k(x′)
λ−ζ

dλ ,(21)

hence

(22) Gζ(x,x
′) =

1
π

∫ +∞

0

cos(rρ)
ρ−ζ

dρ

with r := |x−x′| and whereGζ(· , ·) is the nothing but
the trace oñF of the usual Green’s function of the sea-
keeping problem, noted hereG2D

ζ .
As we search for an asymptotic behaviour of the in-
tegral representation of̃R(λ± i0), we have to proceed
to the limit ℑm(ζ) → 0 in (20), on either side of the
positive real axis. Denoting byGλ±i0 the one-sided
limits of the Green function, we classically obtain

Gλ±i0(x,x
′) =±ie±iλr +

1
π

ℜe
(

eiλrE1(iλr)
)

,



whereE1 denotes the exponential integral.
This function has the following asymptotic behaviors

Gλ±i0(x,x
′)∓ ie±iλr =− ln(r)

π
+o(1) , r → 0,(23)

Gλ±i0(x,x
′)∓ ie±iλr = o(r−1) , r → ∞ .(24)

Now we have to establish the asymptotic behaviour of
ũ± := R̃(λ± i0) f at infinity to conclude.
One shows simply using (23)–(24) for anyf in L2

s(F̃),
the integral representation ˜u± has when|x| → +∞,
uniformly in the directionkx = x

|x| , the following
asymptotic expansion

R̃(λ± i0) f =±2iπw̃λ,±kx(x)Ũ f (λ,±kx)+o(|x|−s)

with s> 1/2.
It is now easy to see that if for a given function
f ∈ L2

s(F̃),

0 = ℑm〈R̃(λ± i0) f , f 〉=±2π‖Ũ f‖2

then necessarilỹU f (λ,±kx) = 0 which implies obvi-
ously thatR(λ± i0) f ∈ L2

0(F̃).

6. The compact perturbation property

Since definition 3 involves bounded operators, we
cannot compare directlỹA and A but an invertible
bounded and real fonction of those operators asÃ =
R̃(−α) andA = R(−α) with α ∈ R+. So the spec-
tral analysis of the latter will provide those ofÃ and
A. Moreover, to stick to the results exposed in§4., we
consider the part ofA spectrally absolutely continu-
ous still denotedA .
First, it can be easily seen thatR̃(−α) satisfy the defi-
nition 2 noticing that

R̃ (ζ) =
(
Ã −ζ

)−1 =−ζ−1(
Id +ζ−1R̃(ζ−1−α)

)
for all ζ ∈ C\]0,1/α[.
Then one shows the following technical result

Proposition 5 The operatorD := A − Ã naturally
defined from L20(F̃) to L2

0(F̃), acts in fact from L2s(F̃)
to H1/2

s+ε(F̃), with ε > 0 such that1/2 < s< 3/2− ε .

This proposition leads to the compact perturba-
tion property noticing that the canonical injection

H1/2
s+ε(F̃) ↪→ L2

s(F̃) is compact, and noticing that
DR̃ (λ± i0) can be considered as an operator acting

from L2
−s(F̃) to H1/2

s+ε(F̃).
We are now going to describe briefly the way to get
proposition 5.
First of all we can notice that setting ˜u = Ã f and
u = A f is equivalent to

∂yH̃(ũ)+αũ = f on F̃ ,

∂yH(u)+αu = f on F̃ .

Then using the definition of the harmonic liftings̃H
andH the action ofD can be described by the follow-
ing diagram

D : f 7→ Φ̃ 7→ ∂nΦ̃|Γ 7→ Ψ 7→ Ψ|F̃

whereΦ̃ := H̃ Ã( f ) andΨ := H D( f ) satisfy

∆Φ̃ = 0 in Ω̃
∂yΦ̃+αΦ̃ = f on F̃

∆Ψ = 0 in Ω
∂yΨ+αΨ = 0 onF̃

∂nΨ =−∂nΦ̃ on Γ

And we know thatΦ̃|F̃ andΨ are given by the integral
representations

Φ̃|F̃(x) =−
∫

F̃ f (y)G−α(x,y)dy(25)

Ψ(X) =
∫

Γ
Ψ(X′)∂nX′G

2D
−α(X,X′)(26)

−∂nX′ Ψ(X′)G2D
−α(X,X′)dX′

for all X′ ∈ Ω.
Henceforth we have to extend the expression (25) to
L2

s(F̃). This is done using formula (23) and showing
simply by integrations thatG−α(x,x′) = O(1/r2) .
Then we must show thatΨ|F̃ ∈ H1/2

s+ε(F̃). By virtue

of (26), we just have to show thatG2D
−α, ∂xG2D

−α and
∂2

xG2D
−α have the same behaviours onJ := {(X,X′) ∈

(R2
−)2 ; y = 0, X′ ∈ Γ} as 1/r2.
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