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SUMMARY

The present paper is devoted to generalized eigenfunction expansions for scattering problem. A new method for
establishing such expansions is proposed and applied to scattering of linear water waves.

1. Introduction
L2(R) = {v:]RH(C; /(1+x2)5|v(x)|2dx<oo},
R

(with the particular case?(R) = L2(R)), which al-
In this paper, we show a general way of establishing [0Ws to considet£(R) andL?(R) as dual spaces in
eigenfunction expansiorfer linear scattering prob-  the scheme
lems, and illustrate it. in the.contex.t of linear water Lg(R) - LS(R) - LZ,S(R) if s> 0.
waves. From a physical point of view, such an ex-
pansion provides the connexion betwésmsientand ~ This means that the integr# uv can be seen as the
time-harmonicmotions. More precisely, it leads to  Scalar product:,-) in L§(R) as well as the duality
decompose the state of the system at every time on aProduct(-,-) betweerlL ((R) andL3(R).
continuous family of time-harmonic states which rep-
resent the response of the system to a family of time- 2, The “free” problem
harmonic plane waves.
How can one obtairigenfunction expansiofdn the This paper deals withocalized perturbations of the
absence of scatterer, the Fourier transform is the verylinear water wave equations in the half-spdee=
tool for this work €2.). A natural idea for dealing  {X =(x,y) € R% y <0} delimited by the free sur-
with scatterers consists in considering the problem asfaceF = {x = 0} (the tilde character will be used for
aperturbationof the formerfree situation. This leads  all quantities related to this free situation). Without
to consider the eigenfunctions of the free problem as outer excitation, the velocity potentigl= §(X.,t) sat-
incidenttime-harmonic waves, and to search those of isfies
the scattering problem by adding a perturbation term -~

. . . Q) AD =0 inQ,

representing acatteredime-harmonic waves@.). 5 .
The first application of this approach is due to Ikebe (2) 0;$+0y =0 onF,
[4] for the Schbdir)ger equation. In hydrodynamics, together with the initial conditions
the scattering of linear water waves by a fixed body .
was first studied by Beale [1], and then by different au- (3) $(0) =go and 6:$(0) = go onF.
thors (see [3]). The common feature of these studies iStpagq equations are easily solved using a horizontal
Fhat mo_st proofs are.hlghly pr_ol_)lfam—dependent , that Fourier transform. We give in Proposition 1 below an
is, a slight ch.ange in the definition of the perturbed abstract interpretation of this well-known result, with
problem requires to z;dapt most proofs. The PUIPOSE ;s the basis of our perturbation approach.
of the present paper is to show a more synthetic ap- Let A denote the operator formally defined By—

proch i e he o o o g et 014) ! o rsmone ing HonF
P ' Q, i.e., forvdefined orF, the function) = FV is the

shall see how to construct generalized eigenfunction

expansions for any “compact perturbation”: we shall solution to
give the precise meaning of this compactness property. AP =0 in Q,
For the sake of simplicity, we shall illustrate the =7 onE

method with the 2D scattering (in a half space) by .

a fixed rigid immersed body, but the method easily Setting$ = H(, this allows us to rewrite (1)—(2) as an
extends to more involved situations such as the sea-abstract wave equation

keeping problem for an elastic floating body. The gen- 2 R R Ay

eral ideas are described in [2], and the detailed appli- @) Orl+AT=0 with A= (0yH)e.

cation to linear water waves is the object of a forth-

coming paper. It may be easily seen tha actually defines an un-
We shall use the following notation, ferc R : bounded positive selfadjoint operator HJ(?;(IE), and



the solution to (4)—(3) writes

(5) ((t) = me{e*if\” g

o).

whereu := go +iA-Y2g,. The Fourier transform ac-
tually provides aliagonalform of this expression in a
spectral basiof A defined by the functions

e ikxty)
v2mn

which are time-harmonic solutions to (1)—(2): they
represent plane surface waves of frequeviéywhich
propagate towardk x . In the sequelvy , will de-
note either the above functions or their restrictions to
F. Note thatwy € L24(F) if s> 1/2.

(6) Wk(X)= for A € RT andk = +1,

Proposition 1 The projection on the famil{w,  }
(7) (U0ak:= (W) Ve LS(F) (s>1/2),

defines (by density) a unitary transformation from
LS(F) to the spectral space

L2(R* x {£1}) = { s frr Siesa [Onif*ch < oo}

MoreoverU diagonalizesA in the sense that(f) =
U*f(A\)U for every bounded function fR™ — C,
which can be written more explicitely

@ fAv=[ N

JRF K=

(V, W, i) Wi, i AA.
T1

The latter formula is thgeneralized eigenfunction ex-
pansionof f(A). For f(\) = exp(—iAY?t), it yields
the diagonal form of (5):

(t) = Re / S (0,10 e VAU A

R 531

We claim that a similar expansion hold for evexym-
pact perturbationof the free water wave problem
(with a possible additional discrete contribution due
to possible trapped modes, see e.g. [5]).

3. Asimple perturbation

Consider the problem of scattering of water waves
by an immersed fixed rigid obstacle. We denote by
Q c Q the domain exterior to its boundaFy(so that
dQ = F UTI). The equations satisfied by the velocity
potential are now given by

9) Ap=0inQ,
(10) 020 +0dy$ =0 onF,
(11) 0nd =0 onl,

as well as initial conditions similar to (3). Exactly as
for the free problem, these equations can be expressed
as an abstract wave equation of the form (4) which in-
volves the perturbed selfadjoint operafos (ayH)“f
instead ofA, whereH is the perturbed harmonic lift-

ing (obtained by inserting the Neumann condition on
r).

How can one construct a spectral basisA8rSimply

by considering two kinds of perturbations of the plane

wavesw, i, written in the form
(12) Wi = W+ W

These functions correspond to time-harmonic solu-
tions to (9)-(11) iW, satisfies

(13)
(14)

AW, =0 inQ,

N -
WG, — AW, =0 onF,
anwfk =~y onT.

The sign+, respectively—, is assigned t@utgoing
respectivelyincoming waves, which is specified by
means of the standarddiation conditionat infinity:

2
(15)  lim_ O Wi FIAW, | dy=0.

=R

To be sure that both families (12) actually define gen-
eralized spectral bases fAr we shall make use of an
abstract framework.

4. Abstract Perturbation Result

For the sake of simplicity, we keep the particular func-
tional spaces introduced in the previous sections to
present some general results. We denotetlgnd 4
two boundedselfadjoint operators ing(ﬁ) (contrary

to A and A which areunboundeli We assume that
we know a spectral basisi € L2¢(F)} of 4 in the
sense of Proposition 1

Let us first show an intuitive construction of a general-
ized spectral basis fofl considered as a perturbation
of 4. We denote their differenc® := 4 — 4. The
idea is to search solutiong, , to (4 —A)w =0 in the
formwy, \c = Wy , + P k- Using the above definition of
D and the fact that4 — M)Wy, i = 0, we see that the
perturbation ternp, , must satisfy

(16) (A—=N)prk = —DWy .

But this equation is ill-posed K belongs to the spec-
trum of 4, which is precisely the situation we are in-
terested in. A way to solve it consists in replacing first
A4 —\ by 24— for somel € C\R". Indeed the re-
solvent

(17) REQ)=A-9 "



defines a bounded operator li§(F) since the spec-
trum of 4 is contained inR*. Then, settingC* =
{¢ € C; £Im{ > 0}, we can consider both one-sided
limits

+

p)\.k = -IR.(Z)DW)\,ka

lim
CE57—AeR*

which formally satisfy (16). The study of the behavior

of R () nearR™ is the object of the so-calldimiting

absorption principle Noticing that
R(@)=RQ)(1d+ DR Q)

(which is easily deduced from the definition @f),

we see that the existence ®f(A £i0) depends on one

hand, on dimiting absorption principlefor the free

problem, i.e., the existence of the limg(A +i0), on

the other hand, on an additional property which en-

sures the invertibility of Id- D R (A +0).

More rigorously, let us introduce the following

Definition 2 The free operatorﬁl is said to satisfy
a “strong limiting absorption principle” if R () :=
(4 —NZ)‘l considered as an operator frong(F) to
L2(F) has one-sided limits

R(A+i0) =

(18) - iliar{LAﬂi(Z) VA >0,

and these limits satisfy the following property: if
Im(R (A +i0)d, G> = 0 for somed € LZ(F), then
R\ £i0)ie L3(F) (which means that a non-excited
time-harmonic wave must have a finite energy).

Definition 3 4 is called a compact perturbation of
4 if D appears as a bounded operator frord {F)
to L2(F), and DR (A+i0) are compact operators in
L2(F) for everyA > 0.

Then we have (see [2])

Theorem 4 Assume that the free operatérsatisfies
the strong limiting absorption principle of Definition
2. Then every compact perturbatichof 4 (which is
assumed to have no point spectjsatisfies a similar
limiting absorption principle, and the one-sided limits
of its resolvent are given by

R(A+i0) = R (A +i0)(Id+ DR (A +i0))*

Moreover both families
Wy, = (Id — R (A£i0) D)Wy,

are generalized spectral bases.af

5. The strong limiting absorption principle

5.1 One-sided limits

We now prove the free operatdr satisfies the one-
sided limits property of definition 2 consequence of
the regularity properties ofw, \ }, x with respect to
A > 0. For a fixed\, consider the partial projection
Uy : L2(F) — C2 defined byJ,¥ = (¥,Wy ). Then the
diagonal expression of the resolvei(tZ) which fol-
lows from (8) writes

.

7\7) =
with (U)\L'],U)\\';)(cz = ZKG{il} U)\ﬁ(k) U)\\7(k)
First notice thatd,(i(k) is the Fourier transforng (i
of 0. Then to proceed to the limit, we make use of
the continuity of the embedding &f2(F) in L}(R)
and the klderian continuity off (L2(1)) = H5(1), the
classical Sobolev Space, where 1/2 andl ¢ R*:

(U 0,0, 0)

(19) .~

(RQ)a dA,

(R@)a,9) (Gpd, Uz

lim =
CEsL—NgeRT Rt

:tin(O)\Oﬂ,U)\OV)CZ

5.2 Finite energy property

We are going to stick to the second property of defini-
tion 2. To prove this property, we shall use an integral
representation of the resolvelRtZ) of A together with
the asymptotic behaviour of its Green’s function.

For a given functioni€ L2(F) andZ € C\ R+ we es-
tablish from (19) and Fubini's theorem, the following
integral representation

20) R0 = [ GyxX)a(X)a,

ka ) Wk (X)
21)  Gy(x,X): dA,
(21) ¢ (%, keél}/ 2
hence
I =

with r := |x— x| and whereG; (-, -) is the nothing but
the trace ot of the usual Green'’s function of the sea-
keeping problem, noted hefﬁD.

As we search for an asymptotic behaviour of the in-
tegral representation dff()\ +i0), we have to proceed
to the limit Om({) — 0 in (20), on either side of the
positive real axis. Denoting b, iy the one-sided
limits of the Green function, we classically obtain

i 1 ; )
Grsio(XX) = +ig™ +F[De(e'“E1(|)\r)) )



whereE; denotes the exponential integral. Then using the definition of the harmonic liftings
This function has the following asymptotic behaviors andH the action ofD can be described by the follow-
y | ing diagram
(23) Gyuio(x,X) Fie" = _In(®) +0(1) ,r -0, . B
. n D:fs P dy®r - W W
(24) Gyio(x,X)Fie™™ =o(r 1) ,r - 0.
Now we have to establish the asymptotic behaviour of where® :=H A(f) and¥ := H D(f) satisfy
* := R(A £i0) f atinfinity to conclude.

One shows simply using (23)—(24) for afiyn L2(F), qu =0 n Q .
the integral representation* "has when|x| — +oo, oy®+ad=fonF
uniformly in the directionky = ﬁ the following
asymptotic expansion AY—0 inQ
RN £i0) f = £2imfty 1 (X)U (A, £ky) +0(|x| %) oW+aW=0 onF
with s> 1/2. ¥ =—0n® onl
Ift éng(o%/\;,easy to see that if for a given function And we know thaﬁJ‘,g andW are given by the integral

representations

0= Om(RA£i0)f, f) = +2m|U |2 .
(25) P (x) = — [ F(Y)G-a(x y)dy

then necessarily f(A,£kx) = 0 which implies obvi-
ously thatR(A +i0) f € L3(F).

(26) W(X) = / W(X')3n, G2 (X, X')

6. The compact perturbation property r
—0,, W(X") G, (X, X" )dX'’

Since definition 3 involves bounded operators, we

cannot compare directhA and A but an invertible forall X’ € Q. _

bounded and real fonction of those operatorsdas Henceforth we have to extend the expression (25) to

R(—a) and 4 = R(—a) with a € R*. So the spec- L2(F). This is done using formula (23) and showing

tral analysis of the latter will provide those Afand ~ Simply by integrations tha_q(x,X) = O(1/r?).

A. Moreover, to stick to the results exposed, we Then we must show tha¥ s € Hslﬁ(F). By virtue

consider the part off spectrally absolutely continu-  of (26), we just have to show th&??, 0,G*} and
ous still denoted?. y 02G® have the same behaviours dn= {(X,X') €
First, it can be easily seen that—a) satisfy the defi- ~ (R2)2:y—0, X' eI} as Yr2.

nition 2 noticing that
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